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Noise-assisted transmission of binary information:
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We study the response of a bistable vertical cavity surface emitting laser to an aperiodic binary signal, by
adding a variable amount of noise. The resulting behavior is an example of aperiodic stochastic resonance, and
in this work we give a detailed comparison between analytical and numerical results and accurate experimental
measurements. We characterize the phenomenon by using different appropriate indicators, which also allow us
to quantify the binary information transmission. We show that the quality of the transmission is enhanced by
a suitable amount of noise, and we give a physical picture of the phenomenon.
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[. INTRODUCTION through a noisy, bistable system of a particular signal,
namely, harmonic noise. The term aperiodic stochastic reso-
The activity in the field of stochastic processes, and inhance(ASR) was coined in Ref[8], referring to the ampli-
particular of noise-induced ordering, has intensified durindfication of sub-threshold, random signals in the Fitz-Hugh-
the last years. This subject is now recognized as extremeljfagumo model of an excitable system. The system
important in a large variety of fields, ranging from biology Undergoes a resonant regime which can be shown by evalu-
and geology, to information theory and physics. An impor-ating the cross-correlation of the output vs the input signal.
tant example of these phenomena is represented by stochade theoretical gnd numerical analysis was extgnded in Ref.
tic resonancéSR). SR is a specific response of bistable sys-[g] to several kind of systems. Further theoretical and nu-

tems to a sinusoidal modulation in the presence of noise. Aﬂ“e”ca' studies of the response of a noisy system to binary,

improvement of the quality of the output signal is observedr"’mdo.m input signal were repor_ted in Refi$1] and[_lO].
as the amount of noise is increased, up to an optiiteio- This large amount of modeling effort was motivated by

; . ; the study of the role of noise in the perception mechanism.
”ar?‘) v_aI_ue. SR was mtroduced n 19$1’2]. to explain the Several observations of related phenomena in biological sys-
periodicity of the continental ice volume in the quaternary

dit has b he obi f A . “Vtems were recently reportdd2]. These works are of great
era, and it has been the object of extensive Investigations,,; ;e que to the clear signature of the phenomena presented.

mainly since the experimental evidence in a bistable ri”9-|owever, the quality of the measurements cannot be suffi-
laser[3]. SR has been studied in detail with analogic Simu-sjent for checking the full predictions of the models.
lations and with analytical and numerical investigatipab The situation is different in Ref.13], where we experi-
Recently, the observation of SR in the dynamical behavior ofnentally investigated the response of a bistable, optical sys-
a vertical cavity surface emitting las@/CSEL) [5] has pro-  tem to a random, binarytelegraph signal, changing the
vided experimental results of the same quality of modelamount of applied external noise. In that preliminary work,
simulations, allowing one to directly verify many of the pre- we showed experimental evidence of ASR, with excellent
dictions of the theory6]. reproducibility, and a control of the parameters, which made
SR is often considered as an intriguing mechanism to imthe work qualitatively different from previous observations,
prove the quality of signal transmission in nonlinear systemsto our knowledge.
However, while investigations of SR have provided impor-  The particular kind of signal considered is not only very
tant insights into the physics of noise-induced resonance, theseful for a basic understanding of the physical mechanism,
generalization from a sinusoidal shaped to an arbitrarllybut is also of particular interest in digital communications.
shaped large input signal is not straightforward. This is simWe discussed this aspect in a previous papdt devoted to
ply suggested by the fact that the matching condition bethe noise-enhanced binary signal transmission in optical
tween the input signal frequency and the Kramers rate, typieommunications.
cal of SR, cannot be obviously applied to nonperiodic In this paper, we summarize and detail the experimental
signals. results first presented in RdfL3], and describe the theoret-
The analysis of the response of noisy, bistable systems tizal models which allow for an excellent reproduction of the
small, aperiodicsignals was recently addressed. In 1994 Ne-experimental findings. We derive both analytical and nu-
iman and Schimansky-Geidf7] studied the transmission merical results, yielding a clear physical picture of the noise-
induced dynamics.
Besides the dynamical approach, a different point of view
*Email address: gianni@ino.it in our case is particularly interesting, i.e., the study of the
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flow of information through a bistable system with a variable
input noise. For this purpose, we introduce some specific
indicators of the quality of the transmission. In this paper, we
present a basic analysis of the phenomenon, studying th
single-bit transmission statistics. This approach allows for a
clear understanding of the physical processes underlying thi
observed behavior, and for a simple analytical description.

The paper is organized as follows. In Sec. Il we summa-
rize the experimental observations. In Sec. lll we introduce
and discuss the models, both with analytical and numerical
techniques, whose previsions are compared with the experi
mental results in Sec. IV. In Sec. V we draw our concluding
remarks.

Il. EXPERIMENTAL RESULTS

1 (arb. units)
717 E T
~
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p—

Preliminary reports of the experimental observations were 100 150 200
given in Refs[13,14. The physical system is composed of a time (W)
VCSEL followed by a polarizer and a detection systeme
Ref.[6] for a detailed description of the sefuBy sweeping .. 5 . .
s -~ sities, with a 50-MHz acquisition bandwidtta) 100, (b) 200, (c)
the pump current, the laser can emit in different polanzannZOO,(d) 600, and(e) 1200 MV,.. In (c) the input pattern is shown

and transve_rse profile Conflguratlo_ns. The tran_SItlon betwee ith an arbitrary vertical scaleA sequence of 50 bithit duration
two states is generally characterized by a bistable curre 49 is displayed

region, where noise-induced jumps occur between the two

states. The laser dynamics can be reconducted in this case B« petween the two stable states. The result is shown in
a van't Hoff—Arrhenius[15,1€6 process, with average per- Fig. 2. A well defined peak is present Bt=350 MV,

manence times usually given t_)y a Kramers I_aw, €., an ex|'ndicating the optimal reproduction of the input signal. For
pon_e_nt|al f“”.C“OF‘ of the noise intensity7]. By mtr_od_ucmg each value of the noise the cross-correlation has a maximum
additional noise into the pump current, the statistics of thefor a nonzero time lag,. between input and output. How-
jumps can thus be changed. The polarization fluctuations A or we point out thaTat);]e experimental valuesQ E. are

transformed into light intensity variations by the polarizer, not significantly changed if a zero time lag is chosen, instead
and detected by means of a photodiode whose signal is ags .. For the sake of simplicity, in Sec. Ill Wé will

uired by a digital scope. The signals from a variable inten- . . . .
gity whi%/e-noige genergtcmO—MHg bandwidth and a pseu- present a theoretical analysis, neglecting the time lag. A de-

. t%iled study of the time lag, i.e., of the synchronization be-
dorandom binary sequence generator are summed an . . .
fween input and output signals, will be reported elsewhere.

coupled into the laser input current. The binary sequence is a As the input signal consists of a binary sequence, it is

tlu6d20ig-8 't2¥V (r;rg(xg]k?obgei;rztg]llg: ﬂ;:adrf] tﬁ:.v&tiitﬁngglt;e interesting to study how the associated information is trans-
bistable region(0.49 mA. As a consequence, the current mitted at the output. We start by defining a procedure to

steps are not large enough to induce a laser state jump with-
out the aid of the noise.

An example of the signal detected by the photodiode, for
different values of the input noise strength, is shown in Fig. os}- ¥ 2N =
1. For low noisg[Fig. 1(a)] the laser mainly remains in its | ,i o
initial state, even if a small amplitude modulation is visible. § o
Increasing the noise, some jumps ocfiig. 1(b)], and, for 061 L
an input noise around 400 mVs, the output follows the 2 .
input signal very well[Fig. 1(c)]. Finally, for larger noise
strengths, the laser dynamics is determined by the nois¢
more than by the input string, with a strong decorrelation
between input and outp(Figs. 1d) and Xe)]. o2

To quantify the observed behavior, we evaluate the cross: I hd
correlation between the input and output signals. For eact a | | |
value of the noise we plot the maximum of the normalized % a0 sw . 1w
correlation noise (mv_)

s
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FIG. 1. Polarized laser intensityfor different input noise inten-
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Cio=max{[ Xin(t) = Xin ][ Xout(t+ 7) —Xoutl}, (1) FIG. 2. Normalized cross-correlation between the input and out-

put signals. Dots: experimental data. Squares: analytical results of

where the overline denotes the time average, and the varEq. (14) using the experimental Kramers times. The dashed line is a
ablesx;,, andx,,; are rescaled with respect to half the differ- guide for the eye.

051110-2



NOISE-ASSISTED TRANSMISSION OF BINARY . ..

0.5

0.4

03

0.2

0.1

FIG. 3. Bit error rate evaluated by sampling the output signal at

[ 3
a

...
=]

L ]
o

[m] ]

W

L
00

noise (mV__ )
s

1000

05

PHYSICAL REVIEW B3 051110

04

03

02

0.1

oe

L L . |
500 1000

noise (mvm)

FIG. 4. Bit error rate evaluated by averaging the output signal

the end of the input bit, vs input noise. Squares: experimental reever the input bit length versus input noise. Squares: experimental

sults. Circles: analytical results from E(LO) using the measured results. Circles: analytical resuls from E¢&7) and(19) using the

Kramers times. Stars: results using extrapolated Kramers times. measured Kramers times. Stars: results using extrapolated Kramers
times.

associate a binary valu® or 1) to the output signal for each

of the time intervals corresponding to the input litee as-  two output levels between two successive jumps. This aver-

sume that the bit lengtfh, is known. o age time is measured for both output states, and for the two
We use two different methods: the output bit is defined by ayes of the input signal as a function of the noise. If 0 and

comparing, with a threshold, either the signal sampled oncg gre the values of the input bit and if we calland + the

in the bit or the signal averaged over the bit duration. The, rresponding output states, we can defiflé as the mean
threshold value is chosen as the average of the output &gn@&e spent in the state:, respectively, duriﬁg a given input

of a sufficiently large number of bits. bit 0 or 1. The measurements were performed by keeping the

. Concerning the f°_"“9f procedur_e, _samplmg the QUtp_anput level for a long time, i.e., we measured the stationary
signal at the very beginning of the bit gives a result which ISmean times

strongly reminiscent of the previous bit state. It is clear that The results are reported in Fig. 5. The measurements are
the b_est result is obtamed. .by s'am.plmlg the signal as late Farried out for high enough noise, in order to have sufficient
possible, when the p_rob_ab|I_|ty o_llstrlbutlon of the_ output stateyaristics in a reasonable time. The measured mean times, as
has relaxed to the distribution imposed by the input bit. Weytiong of the inverse of the noise, are well fitted by an

therefore take th.e S"?‘mp'e at the end of the bit. ._exponential function, according to the Kramers @], al-
The synchronization between the calculated output Smn%wing us to extrapolate the results for low noise

and the input is obtained by shifting the starting point for the
averaging process in order to maximize the correlation be-
tween input and output strings. This procedure is repeatec
for each value of the input noise. g

The indicator chosen to quantify the transmission quality o
is the bit error raté BER) B, defined as the percentage of the ‘ )
wrong transmitted bits. The BER is commonly used in com- L
munications, as it represents the simplest way to evaluate th _ S
efficiency of a binary data channel. According to the two % 10e o
methods used to assign the output bit value, in the following® L e
we will use the notatioBg for the first method and, for A0
the second one. 0'E s

In Fig. 3 we report the experimental measurementB of i 8
as functions of the input noide. A clear minimum is found 10°¢
for a well defined value ob. A similar behavior is obtained 10"5
by measuringB, (Fig. 4). In this case, a slower increase of 5 S 0 3 20 2%
the indicator is observed after the minimum.

In the next sections we will compare the experimental
findings with the predictions of theoretical models. For this  FIG. 5. Experimental Kramers times vs noisé* (empty
purpose, we will use some experimentally determined pacircles, T® (full circles), T (empty squares and T% (full
rameters in the theoretical expressions. In particular, we&quares The dashed lines are the fit with an Arrhenius law for low
measured the average time period spent by the system in tieise extrapolation of the times.

=3

(Ioise)” v %)
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Ill. MODELS 1 0

The most widely used model for the VCSEL is the so-
called spin-flip mode[18]. It has been reduced using adia-
batic approximations by Willemseet al. [19], who indeed
obtained a local description of the polarization switchings in
terms of the two well potentials. A different kind of reduc-
tion was described in Ref20], where the authors again ob-
tained a local model with a bistable potential. A discussion
of the validity of such reductions is beyond the scope of this
paper. However, as reported in Rdf8,21], the dynamics of
the laser system can be locally well described by an over
damped Langevin model with a two-well potential.

In Ref.[21] we also showed that a phenomenological po- - + - +
tential, obtained from the experimental histograms of the po-|
larized laser intensity, leads to an extremely good prediction
of the residence time distributions. However, a simple quar- FIG. 6. Definition of the rates for the model.
tic potential is sufficient to reproduce the features described
here. The model considered is based on the Langevin equa- In the following we consider two simple approaches,

tion which offer a clear picture of the physical processes involved
and allow for analytical calculations. In particular, we study
V(XY the master equations of the two-level model, obtaining an

T X +&(0), 2) explicit evaluation ofBg and C,5, and we introduce a

method to derive the residence time probability distributions
whereV(x,t) =x*—2x?+ u(t); £ is a white, Gaussian noise within a bit, which in turn are used to evaluzag, .
term such thaf&(t) &(t"))=2D X 8(t—t"); w(t) is the input
signal, i.e., a random binary sequence switching between
—A (level 0 andA (level 1) everyTy,. The variablex rep- ) N o o
resents the polarized laser intensity. We deflneni' (t) as the two probabilities of being in the

We integrate Eq.(2) with a second order, stochastic States{+,—} when the input is 0,1 at the timeafter the

Runge-Kutta algorithnfi22]. The integration step is 0.05, the beginning of the input bitn%(t) can be calculated using the
bit height isA=0.2, and the bit length i$,=100. The so- master equations
lution is sampled with the same rate as the experimental

A. Master equation approach

0,4y _ 101 101
signal, for a better comparison. The results of the simulations on% it = =Wt + Wn),

are used to verify the analytical expressions found in Secs. o1 o1 01 (4)
Il A and Ill B. This comparison is performed for a symmet- an2H(t) =W (1) - Won%k(),

ric potential, while the analytical calculations are givenina 01 o1
more general, asymmetric case, and directly compared witwith n3"+nZ"=1.

the experimental results in Sec. IV. Equations(4) are solved, yielding
For each value of the input signal, the time evolution of o o1
Eq. (2) is characterized by fast jumps between the two stable n%it)=n. (0)e o1t adY1—e tFoy), 6)

statesx.. of the potentialV(x). As the switching time is
much smaller than the permanence time within the potentiavhere we have introducedq ;=W +W%! and o%*
wells, a simple description of the dynamics can be carried=\/\/%1/30'1. We remark thah..(0) does not depend on the
out in the framework of a two-level model. We introduce theactual input bit, but on the previous history.
states{+,—}, corresponding to the system being close to Due to the random nature of the input signal, the prob-
X~ . We can now use four transition ratws‘i'l for the two  ability for each input bit is equal to 1/2. As a consequence,
input levels{0,1}. The notation is summarized in Fig. 6. We the initial probabilities are given by
thus assume that the distributions of the residence times are
exponential, according to the Arrhenius—van't Hoff law N.(0)=3[n%(Tp) +n%(Ty)]. (6)
[15,16, as we have experimentally verified,

Equations(5) and(6) give, as solutions,
0,1 _ 1 T
Pt (T)— @ex — TTJ

whereT%! (Kramers timesare the mean time of residence in

) 3 011 e Tbhoa 1,001 — e~ ToB10
ng‘l(t)Zat(l e )t+az(1—e )

e thoa

2— (e~ TvPot e Toh1)

the state+ during a given input and%'=1MW?2! (see Fig. +adl(1-e oy (7)
6). The underlying assumption is to neglect the intrawell
motion. and, at timeT,,
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1
+ > 91— e~ Toh1ro)e~ Tohos

n%(Ty)= PP N Ny ®
The indicatorBg is given by
Bs=3[n1(Tp) +n%(Tp)]. ©)
Inserting Eq.(8) into Eqg. (9), we obtain
1 0 -T -T ~Tp(Bo+
oo S

In the symmetric case W° =W =1/T, and W% =w"
=1/T;), we obtain

T—Ts
Ti+Ts)

1
BS:_

5 1—(1—9_(1/TI+1/TS)TD)

11

For a comparison of Eq11) with the result of the nu-
merical simulation, we can derivg,  from the potential
V(x), following Kramerg 17]. A simplified expression, valid

T

for small A, is
T .=——=ex )
l,s 2\/§

where the ‘“+" refers to T;, and vice versa, andV is the

AV:A
D

(12

Also for C 5, we find a very good agreement with the results
of the Langevin equation integration.

B. Residence time distributions: averaged BER

In order to evaluateB, we cannot use the probability
densitiesn??, since an ensemble average over the whole
sequence would be implied. In fact, this indicator requires a
specific operation within each bit which cannot be performed
on the average distributions*. It is therefore not trivial to
find an analytical expression f@&, starting from the master
equation. Here we will introduce an alternative method,
based on a statistical analysis of the state jumps within the
single bit. We still assume that our system is described by a
two-level approximation, in which the residence time distri-

potential barrier height in the absence of modulation. A morebutions in a given state- or — are given by the3).
accurate expression takes into account the real shape of the Assuming, e.g., that the input bit is 1, we can calculate

potential with the input signal, and reads]|

0,

L 2m exp( V(xo)—V(x+)) 13
W)V (x0)] D ’

Xg being the unstable point of the potential, which is given
for the appropriate value of the input bit.

In Fig. 7 we report a comparison between the integration

of the Langevin equatiof®) (circles and the value obtained
from Eq. (11), using Eqgs.(12) (dashed lingand (13) (dot-
dashed ling In spite of the small value 0A=0.2, the latter

expression yields a better agreement at high noise. Such ay”

agreement also confirms that the discrete two-level approxi-
mation used for the analytical results is valid.

The correlationC,5 can be evaluated by integrating over
the bit interval the difference between the probabilities to be
in the right and wrong states:

1 T
c.ozz—beo Tint—nb)+(n —nd)Jdt. (14

In the symmetric case we obtain

|

TI_Ts

. 1— e [T+,

(LT + 2Ty Ty

X|1-

(15

the probability densityP' (T) to remain, on the whole, a
time betweenT and T+dT in the + state duringT,. We
have to sum over all possible ways of dividing an interval of
durationTy, into subintervals, having a total time of residence

T T T
05 —O—\Q .
\ @ O
! PR [ttty
04 o ettty .
Radited
%J ‘/‘Q/./// -
“ O“(‘/)//
0.3+ ‘ o.’/ —
t kAL
L [} 5;'5/ i
o
02 R4 —
"/.
"/
O] 1 | 1 | 1
0 0.5 1 1.5
D

FIG. 7. Numerical and analytical calculation of the sampled

BER (Bg) for the parameters given in Sec. IBg is obtained from
the Langevin equatiofEqg. (2)] integration(circles. In the analyti-
cal expressioEg. (11)], the Kramers times are calculated using
Eq. (12) (dashed lingor Eq.(13) (dot-dashed ling
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in the + state equal td@. The probability of each subinterval

0.5—"‘@\
is given by Eq.(3). We obtain Y
oal %
) 1 T To-T T
P+(T):E ex _T_l exp — 11 H
+ - 03 &
0 n = \\
Tb 1 T(Tb_T) Q \‘ ”,,—”’
Tl Ao ni(n+ )M TiTl 0.2 b\ > /,/O o .
o} T o
N i 1 [(T(T,-T)|" 0.1 Seog-omS O ©
Ty Th/e=o (2| TiTE
T, Ty % 0|.5 i L5
+6(T—Tp)ex ) +o(T)ex Tl D
+ -

FIG. 8. Numerical and analytical calculations of the averaged
BER (B,) for the parameters given in Sec. IB, is obtained from

_ _ an integration of the Langevin equati¢gq. (2)] (circles. In the
The first(second term in square brackets comes from all analytical formulg Egs. (20) and (17)], the Kramers times are cal-

the events in which the intervdl, is divided into an odd, culated using Eq(13) (dashed ling
namely, 2+ 3 (even, namely 8), number of subintervals.
The delta terms are the contributions for the case of no jumps |n addition, in the symmetric case we ha\l%i(T)
occurring during the bit interval23]. The factor; comes =P%(T)=P,(T) and P (T)=P%(T)=P4(T). Combining
from the average over the two possible states of the system g{ese results, one obtains

the beginning of the bit. Equatidid6) can be further reduced

(16)

by summing the power series, obtaining

Pi(T)=3[exp( -
2 T

Ty

Ao

Th
+6(T)exp — E ,

where the function$,, are the modified Bessel functions of
ordern.

Similar relations hold foiP° (T). Moreover, we have the
relations:

17

POYT)=POHT,—T). (18

B, is just the probability to remain in the state for a time
longer thanT /2 while the input bit is 0, or to remain in the
“-" state while the input bit is 1, i.e.,

Th
Ba= %f [P°(T)+PL(T)]dT. (19
Tp/2

Th

BA: J
T

The analytical expression§l9) and (20) are integrated
numerically.

In Fig. 8 we plot the values obtained from the integration
of the Langevin equatiofEq. (2)] (circles together with the
result of Egs(20), (17), and(13). The agreement is good as
long as the noise remains smaller than the potential depth.
For high noise(after the resonangéhe Kramers expression
for the permanence times is no longer reliable, since the
time-scale separation hypothesis is no longer verifezk
Refs.[17,24]). However, we stress that the comparison with
the experimental results is based on an analytical calculation
with experimentally measured permanence times. In this
case the agreement is still good, as shown in Sec. IV.

The analytical result shown in Fig. 8 refers to specific
values ofA and T, and considers a simple potential giving
a specific relation betweeh andT. However, the analyti-
cal expressions found foB, are more general, and it is
interesting to analyze their behavior for arbitrary values of
the parameters. In Fig. 9 we report a contour plotBgf
versus the rescaled residence tinlgéT, and T¢/T,. The
only assumption for this graph is the exponential decrease of
Eqg. (3) in the two states. The region above the equal times
line [labeled by—log;o(2)] is meaningless, since it would
imply T,<Ts. Once givenT, and T as functions of the
noise, on the contour plot we can trace a path which gives
B, . As an example, assuming a Kramers relationTipand

T, [e.g., Eq.(12)], we obtain a straight patfdashed ling
given by y=ax+b, where a=1-2A/(AV+A), b
=2A |0g(7'r/2\/§Tb)/(AV+ A), and ,y) are the coordinates
in the contour plot. Increasing the noise, the path is followed

Tp/2
PS(T)dT=J P/(T)dT. (20
2 0

b/
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05— - T - T T i we compare the experimental data with the prediction of Eq.
oe®) - 1 (14), where the typical time3%! are measured as described
in Sec. Il.

The agreement is very good. However, in order to shade
light on the underlying physical processes, we consider the
limiting cases of low and high noise. Indeed, the resonance
results from two independent processes, whose effects on the
output signal reproduction are monotonic with noise and op-
posite.

For low noise, the system response during each bit is
strongly influenced by the final output state in the previous
bit. For high noise, fast fluctuations are found in the response
[see Figs. (d) and Xe)], again leading to a decorrelation of
sl : . : ' : ' : the output signal versus the input. The rafid T decreases
toward unity, andC,5 vanishes.

A simple estimation of the input-output correlati@)q

FIG. 9. Bit-averaged BER from Eq(20) as a function of can be given in these two limiting cases. For low noise, we
T,.s/Ty. We plot the contour lines of lgg(B,) (solid lines. The  consider that at most one single jump toward the right output
contour line—log,o(2) corresponds to the limiting case of a com- state can occur within a bit: this first jump is necessary to
pletely uncorrelated output binary signal, wikp=T, . The dashed lose the memory of the previous state. This amounts to say-
line represents a scan @y, increasing from right to left, for the ing thatT,—cc. When the system is in the wrong state at the
same parameters of Fig. 8. The region beyond the contour linebeginning of the bit interval, in order to induce a state flip,
—log;(2) is meaningless, as it correspondsTto>T, . the residence time in the wrong staf€ must be shorter

enough than the bit length. The correlation can be evaluated
from the top right to the bottom left. The resonant behavioras the sum of two contributions, corresponding to the system
of B, is clearly visible. The change of parameters yields astarting, respectively, in the right sta@nd remaining theje

change of the slope and a shift of the path, and thereforgnd in the wrong stat@vith one jump to the right one within
induces a change of the resonance position and depth. Figufige bit):

9 gives a comprehensive picture Bf, behavior, for a very

log, (T/T)

general system. 1 1 (TeT,—2t t Th
An inportant feature that can be inferred from Fig. 9 con- C,p= 54— 5( J — ex;{ — _If)dt—exp( — T—”
cerns the transmission rate. As the meaningful physical 0 'bls s s
quantities are the rescaled residence times, the bit duration T, T,
ol - )
S

T, can be arbitrarly reduced, providing that a suitable =T

amount of noise accordingly reduces the Kramers times. Of b
%or high noise, many jumps occur within a bit; thGs,
=N(T,—Tg)/T,, where N=T,/(T,+T,) is the (average

course, in a real system the transmission rate is limited b
effects which are not included in our simple description.
Some examples in our system are the finite jump time be- ] .
tween the two polarizationgbout 10 n§ the noise intro- NUMPer of jumps, giving
duced in the laser current, which also produces fluctuations
in the total intensity, which eventually mask the signal; and Co T—Ts 23
the quasipotential, that does not follow istantaneously the o T+ TS
modulation on the pump current. This last point is presently
subject of investigations. Using the probability densities, the The plots of Eqs(22) and (23), evaluated using the ex-
correlationC o can also be evaluated as perimental residence times, are reported in Fig. 10, showing
a very good agreement with the experimental data. In Fig. 4
the experimental measurementsByf are compared with the
analytical expressiofEq. (19)]. The Kramers time3%* are
measured as described in Sec. Il. The agreement is excellent,
obtaining the same result as in Sec. Il. above all for a noise higher than 200 mys. Below this
value, the uncertainty in the evaluations of the Kramers
times leads to a poor accuracy of the theoretical predictions.
The same considerations can be formulatedBgi(see Fig.

In this section we compare the numerical and analyticaB), where the mentioned effect at low noise is more evident.
results with the experimental measurements, and discuss tiowever, the overall agreement is still very good.
physical contents of the phenomena. In R&8] we already Both correlationsC,o and B, quantify the distance be-
reported a preliminary investigation of the system behaviorfween input and output signals within a bit duration. While
based on the study of the correlati@), . For the sake of C,o uses a continuous range of values, a threshold-based
completeness, here we summarize the main points. In Fig. 2lecision is used foB, . The result is then averaged over the

+1. (22)

2T—

- Torptm+pOmy, (21
b

To
C|o:]2; 0 dT

IV. DISCUSSION
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I~V A S G ST S—— noise level, the distributio®(d,g) shows two sharp peaks

B - of nearly equal intensities almost, symmetric around 0. The
,43'" correlation is then very small, since the two peaks average to
. 0, while B, is found close to 1/2. As the noise increases, the
g" ] peaks corresponding to the wrong output bits decreases to
06| o . the benefit of the other one, and the two peaks broaden.

/ ) Close to resonance, the left peak almost merges with the
° LA right one, indicating that the system follows the input se-
04 L4 N 7 quence rather well. The distribution is very asymmetric,

L ® o - leading to a strong cross-correlation, and the probability for
o2/ ® ey diotobe negative is very small, resulting in a snial. For
‘o high noise, the distribution tends toward a Gaussian, as one
/ ] expects from the complete randomization of the system. Its
0 $ . center tends slowly toward 0 as the noise increases, explain-

oY) ing the sloyv decread@ncrease of the cross-correlatiorg(,)
Versus noise.

FIG. 10. Normalized input-output cross correlation. Dots: ex-  1he€ discussion oBs behavior is even simpler, and in this
perimental data. The asymptotic results for low ndigg. (22), case the resonance is also the result of two independent phe-
diamondi and high noisq:Eq. (23), square}are shown using the nomena. For low noise, one bit Iength is not enough to loose
experimental Kramers rates for the calculations. The dashed linggiemory of the previous bit state. As the noise is increased
are guides for the eye. and the residence times shorten, this effect becomes less im-

portant. With the usual approximatidn> T, the expression
whole bit sequence. To draw a link between these two indifor Bg for low noise is
cators, let us consider the random variathlg, defined on a

0.8 —

‘ ! . 1 T
given input bit as Bg=-exp — 2, (29
B 1 (T — —
d|o—ﬂf0 dt[Xin(t) = Xin][Xoul(t) =Xoud . (24) For high noise, when the memory effect is negligible, the

probability to obtain the right bit value approachg&g/(Tg

d,o measures the cross-correlation on a given input bit-T,). According to the Kramers layl7], this expression
between input and output. It is positive if the output bit is decreases with noise. With respect to the other two indica-
“right” (i.e., matches the input opeand negative otherwise. tors, a shorter time is sufficient to get rid of the memory
It is easy to see that the correlati@y is the average oo effect(giving a steeper decrease of the BERhile for high
over the ensemble of input bits, whik, is the area of the noiseBg is higher tharB, .
normalized distributiorQ(d,p) between—«~ and zero. A significant difference between classical SR and the phe-

In Fig. 11 we show the shapes @f(d,p) for low noise = nomenon presented here concerns the possibility of interpret-
(a), before resonana@), close to resonande), and for high  ing the resonance as a time-scale matching. The statistical
noise (d), obtained from the experimental data. For a lowsynchronization in SR is obtained when the average time

0S5 T — OSTT—T T T T
(a) (b)
ol [ R PR oL H_\ L1 I —| FIG. 11. Plot of the normalized distribution
60 40 20 0 20 40 60 60 -40 20 0 20 40 60 Q(d,o) [see Eq.24)] for different input noises:
OSrrT— T T 71 T 717 ST T T T T T T from left to right and top to bottom, 100, 200,
(C) (d) 500, and 1200 my,s- The horizontal axis is in
arbitrary units.
i
- I i L _
&
ol 1 N m L
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Tk(D) between two successive noise-induced transitions is V. CONCLUSIONS
comparable with half the modulation peridg, . Therefore,

the approximate SR matching condition reads We have presented an experimental and theoretical analy-

sis of noise-assisted transmission of binary information
2T«(D)=T,,. (26)  through a bistable optical system. The phenomenon is a par-
ticular example of aperiodic stochastic resonance, and in this
In our system, an equivalent condition in fact does notwork the predictions of theoretical models are compared
hold. The characteristic time scale of the input signal is nowwith sufficiently accurate experimental findings. The phe-
T,. As we discussed, this period must be compared With nomenon is first analyzed by considering the complete time
andT,: a few T are necessary in order to lose the memoryevolution of the bistable system, by means of the input-
of the previous bit; on the other harfl, must be long with  output correlation. Moreover, we have studied the binary in-

respect tol : formation flow by using appropriate indicators. Both analyti-
cal expressions and numerical simulations are in quantitative
Ts<Ty, agreement with the measured quantities. The analysis of the
(27) low- and high-noise limit cases leads to a clear picture of the
T>Ty. phenomenon, showing that the “resonance” is more pre-

cisely described as a crossing region of two independent pro-
Fesses, whose effects on the output signal reproduction are
monotonic with noise and opposite.

In other words, the two conditior(7) define a region for
D where the output well reproduces the input signal. Even i
an optimal value oD is found, it cannot be considered as a
real resonancéor a time-scale matchingbut rather as the
best compromise naturally arising between the two require-
ments. Such an optimal value depends on the choice of the
indicator. Moreover, botfig andT, depend on both the input This work was partially supported by EU network HPRN-
noise and the signal amplitude A higher value ofA yields ~ CT-2000-00034 “VCSEL's for Information Society Tech-
a larger ratioT| /T4 and therefore a wide region & where  nology Applications” (VISTA). S. B. acknowledges EU
the input signal is well reproduced, in addition to a bettersupport through the TMR Grant “Marie-Curie” No.
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